Contents lists available at ScienceDirect

Journal of Fluorine Chemistry

journal homepage: www.elsevier.com/locate/fluor

Investigation of CF₂ carbene on the surface of activated charcoal in the synthesis of trifluoroiodomethane via vapor-phase catalytic reaction

Guang-Cheng Yang^a, Shi Lei^a, Ren-Ming Pan^a, Heng-Dao Quan^{b,*}

^a School of Chemical Engineering, Nanjing University of Science & Technology, NanJing 210094, China
^b National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan

ARTICLE INFO

Article history: Received 18 June 2008 Received in revised form 20 October 2008 Accepted 21 October 2008 Available online 30 October 2008

Keywords: CF₃I CF₂ carbene CF₃ radical Activated charcoal Mechanism

1. Introduction

Trifluoroiodomethane (CF₃I) has a weak C–I bond, which makes it chemically and photochemically active. As a result, CF₃I possesses a short atmospheric lifetime and low global warming potential (GWP) [1]. For example, its lifetime is a few days and GWP is the same grade as CO₂ [2]. On the other hand, CF₃I is efficient in fire suppression and SiO₂ dry etching, and it is miscible with mineral oil and compatible with refrigeration system materials. CF₃I has become the current subject as promising replacements for halon and other halohydrocarbons in the application of fire extinguishing agent, freezing medium and etching gas [3–6].

By now, literatures have reported some methods to prepare CF₃I. A. Banks first prepared CF₃I by the reaction of Cl₄ with IF₅ [7]. In addition, CF₃I can be synthesized by thermal decarboxylation of silver trifluoroacetates in the presence of elemental iodine [8], by the reaction of Hg(CF₃)₂ and Hg(CF₃)I with elemental iodine [9], by reaction Bi(CF₃)₃ and ZnBr(CF₃)·2L (L = DMF, CH₃CN) with iodine monochloride [10,11].

Above-mentioned methods do not seem likely candidates for large-scale production of $CF_{3}I$ due to the low yield and batch processes. Currently a continuous vapor-phase catalytic process for the manufacture of $CF_{3}I$ has successfully been developed by

ABSTRACT

This paper investigates the synthetic mechanism of trifluoroiodomethane (CF₃I) in the reaction of trifluoromethane and iodine via vapor-phase catalytic reaction. It is suggested that CF₂ carbene is the key intermediate and is formed in the pyrolysis process of CHF₃ at high temperature. However, in pyrolysis of CHF₃ under activated charcoal (AC) existing conditions, no C_2F_4 was detected. H₂ and 2-methyl-2-butene could not trap the CF₂ carbene. When treating the remained compounds on the used AC with H₂, CH₄ is formed on the process. It is proposed that CF₂ carbene combines with AC strongly and transfers into CF₃ radical on heat. In addition, it is found that the AC is not only the catalyst supporter to form CF₃I, but also a co-catalyst to promote the formation of CF₂ carbene and CF₃ radical.

© 2008 Elsevier B.V. All rights reserved.

reacting CHF₃ or C_2F_5H with I_2 in the presence of a catalyst, which makes the CF₃I industrialization possible [12–14]. Nagasaki et al. have studied the mechanism for CF₃I synthesis on the vapor-phase catalytic reaction, and suggested that the metal salts catalyzed the dehydrofluorination of CHF₃ to produce CF₂ carbene, and the supporter of activated charcoal (AC) catalyzed the disproportionation of CF₂ carbene [15] (Scheme 1).

In our investigation, we successfully obtained CH_2F_2 in the pyrolysis reaction of CHF_3 under hydrogen existing conditions, which may support the synthetic mechanism of CF_3 I that the CF_2 carbene is the intermediate during the pyrolysis process of CHF_3 , and the formed CF_2 carbene transfers into CF_3 radical in the presence of AC or catalyst, furthermore CF_3 radical reacts with iodine to form CF_3 I in the presence of catalyst. Also it was found that CF_3 I is formed in the reaction of CHF_3 and I_2 only in the presence of activated charcoal without other catalyst components, which can be attributed to that AC is not only the catalyst of disproportionation of CF_2 carbene and a porous catalyst supporter, but also a co-catalyst to promote the formation of CF_2 carbene.

2. Experimental

2.1. Materials

2-Methyl-2-butene (99.5%), was purchased from Shanghai Sun Chemical Technology Co., Ltd., China. Trifluoroiodomethane were purchased from Zhejiang Xingteng Chemical Co. Inc., China.

^{*} Corresponding author. Tel.: +81 298 61 4771; fax: +81 298 61 4771. *E-mail address*: Hengdao-quan@aist.go.jp (H.-D. Quan).

^{0022-1139/\$ -} see front matter \circledcirc 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.jfluchem.2008.10.004

Activated charcoal (AC) was obtained from Shanxi Taiyuan Activited Carbon Factory and KF (99%) was purchased from Sinopharm Chemcial Reagent Co., Ltd., China. HF was obtained from Blue Express, Inc. of China. I₂ was purchased from Nanjing Yicheng Chemical Co., Ltd., China.

2.2. Instrument and apparatus

Products were analyzed by means of GC-1002 produced by Beijing analytical instrument factory. The capillary column was a CP-PoraPLOT Q with 0.32 mm i.d. and 30 m from J&W Scientific Inc. The column was programmed as follows: the initial temperature was set at 60 °C for 6 min; then the temperature was increased at the rate of 40 °C/min, and finally reached to 200 °C and held for 11 min. The instrumental parameters were set up as follows: injection port temperature, 200 °C; FID detector, 250 °C; the carrier gas was N₂ (0.1 MPa).

GC–MS (EI, 70 eV) spectra were measured using the Shimazu GCMS-QP2010 system equipped with GC-2010. The column was CP-PoraPLOT Q with 0.32 mm i.d. and 30 m length from J&W Scientific Inc. The column was programmed as above-mentioned GC conditions. Injection port temperature, 200 °C; the carrier gas rate, 4.1 cm³ He/min.

The BET surface area of AC were measured by mean of low temperature adsorption of nitrogen using a micromeritics ASAP 2000. Samples were degassed under vacuum ($P < 10^{-5}$ Torr) at 573K for 3 h before measurement.

2.3. Preparation of catalysts and reaction procedure

2.3.1. Preparation of catalyst

20 g AC was added into a KF solution which was prepared by dissolving 5 g KF into100 ml de-ionized water, and keep that at room temperature for 1 h. Then the catalyst was dried at around 100 °C for 3 h under atmospheric conditions and at around 250 °C for 2 h under nitrogen flow conditions. Inconel reactor with 12 mm in diameter and 300 mm in length was equipped with an inside Inconel tube for inserting type-K thermocouples with 1 mm diameter. All gas inlets were controlled by the mass flow meters.

2.3.2. Pyrolysis of CHF_3 in the presence of catalyst

Heated the catalyst bed to 550 °C under nitrogen flow with the rate of 100 ml/min. Then nitrogen flow was stopped and CHF_3 with 80 ml/min was introduced to reactor, 2.5 h later, the outgases passed through water and a KOH solution to neutralize HF formed. Then the exiting gas was analyzed by GC–MS. The data of MS are listed as follows.

- 1. CF₄, *m*/*z*: 69, ⁺CF₃; 50, ⁺CF₂;
- 2. CF₃CF₃, *m*/*z*: 119, ⁺CF₃CF₂, 69, ⁺CF₃, 50, ⁺CF₂;
- 3. CHF₃, *m*/*z*: 69, ⁺CF₃, 51, ⁺CHF₂, 31, ⁺CF;
- 4. CF₃CF₂CF₃, *m*/*z*: 169, ⁺CF₃CF₂CF₂, 119, ⁺CF₃CF₂, 100, ⁺CF₂CF₂, 69, ⁺CF₃; 50, ⁺CF₂;
- 5. CF₃CHF₂, *m*/*z*: 119, ⁺CF₃CF₂, 101, ⁺CF₂CHF₂, 69, ⁺CF₃, 51, ⁺CHF₂;
- CF₃CF₂CF₂CF₃, m/z: 219, ⁺CF₃CF₂CF₂CF₂, 169, ⁺CF₃CF₂CF₂, 150, ⁺CF₂CF₂CF₂, 131, ⁺CF₂CF₂CF, 119, ⁺CF₃CF₂, 100, ⁺CF₂CF₂, 69, ⁺CF₃; 50, ⁺CF₂.

Pyrolysis of trifluoromethane in the presence of AC^a.

Entry	Regent	Product
1 2	CHF ₃ , H ₂ CHF ₃ , 2-methyl-2-butene	CH ₄ 2-Methylbutane, pentadiene, 2-methyl-2-butene and its isomer
3 4 5 ^b 6 ^c	CHF_3 CHF_3, H_2, I_2 $CHF_3, then H_2 after N_2 wash$ $CHF_3, then HF after N_2 wash$	CF ₄ , C ₂ F ₆ , C ₃ F ₈ , C ₂ HF ₅ CH ₄ , CH ₃ CH ₃ , CH ₃ I CH ₄ CHF ₃

^a Reaction temperature is 550 °C.

^b First CHF₃ passed through the AC in reactor for 2 h at 550 °C, then washes the AC by nitrogen at 550 °C for 1 h, then hydrogen is introduced into the reactor at 550 °C to check the products.

^c First CHF₃ passed through the AC in reactor for 2 h at 550 °C, then washes the AC by nitrogen at 550 °C for 1 h, then HF is introduced into the reactor at 550 °C to check the products.

2.3.3. Pyrolysis of CHF₃ in the presence of catalyst and H_2

The reaction procedure and conditions were same with Section 2.3.2, but CHF_3 flow was replaced by the mixture of CHF_3 with 50 ml/min and H_2 with 50 ml/min. Then the gas was analyzed by GC–MS. Its data of MS are listed as follows.

1. CH₄, *m/z*: 16, ⁺M; 15, ⁺CH₃, 14, ⁺CH₂, 13, ⁺CH.

2.3.4. Pyrolysis of CHF_3 in the presence of AC

18 ml AC was packed into the reactor. The reaction procedure and conditions were same as Section 2.3.2. Then the exit gas was analyzed by GC–MS. The data of MS were same as Section 2.3.2 (see Table 1).

2.3.5. Reaction of H_2 and the remained compounds on the surface of used AC

At 550 °C, nitrogen flow with 100 ml/min was passed through the reactor used in Section 2.3.4 to wash the remained CHF₃ for 2 h, then H₂ with 50 ml/min was introduced into the reactor for 1 h. The outgas was passed through water, and a KOH solution to neutralize HF generated. Finally the gas was analyzed by GC–MS. The results were listed as follows.

1. CH₄, *m/z*: 16, ⁺M; 15, ⁺CH₃, 14, ⁺CH₂, 13, ⁺CH.

2.3.6. Pyrolysis of CHF₃ in the presence of AC and H_2 flow

The reaction procedure and conditions were same as Section 2.3.4, but CHF_3 was replaced by a mixture of CHF_3 with 50 ml/min and H_2 with 50 ml/min. The outgas was analyzed by GC–MS to obtain following results.

CH₄, *m*/*z*: 16, ⁺M; 15, ⁺CH₃, 14, ⁺CH₂, 13, ⁺CH.

Then reaction temperature was increased to 850 $^{\circ}$ C and kept at that temperature for 2 h, the out products were analyzed by GC–MS. The results were same as that at 550 $^{\circ}$ C (see Table 2).

Table 2	
Pyrolysis	of trifluoromethane on catalyst of KF/AC.

Entry	Regent	Catalyst	Temperature (°C)	Products
7	CHF ₃	KF/AC	550	CF ₄ , C ₂ F ₆ , CHF ₃ , C ₃ H ₈ , C ₂ F ₅ H
8	CHF ₃ , H ₂	KF/AC	550	CH ₄
9	H ₂	AC	550	-
10	CHF ₃ , H ₂	Empty	850	CH ₄ , CH ₂ F ₂ , CF ₃ CH ₂ F, CHF ₂ CHF ₂
11	CHF ₃ , H ₂	AC	850	CH ₄

-: no products detected.

2.3.7. Reaction of HF and the remained compounds on the surface of AC

At 550 °C, nitrogen flow with 100 ml/min was passed through the reactor used in Section 2.3.4 to wash the remained CHF₃ for 2 h. Then HF with 50 ml/min was introduced into above reactor for 1 h. The outgas was analyzed by GC–MS to obtain following results.

CHF₃, *m*/*z*: 69, ⁺CF₃, 51, ⁺CHF₂, 31, ⁺CF.

2.3.8. Pyrolysis of CHF_3 in the presence of AC and 2-methyl-2-butene vapor flow

The reaction procedure and conditions were same as that in Section 2.3.4. In the process of reaction, 2-methyl-2-butene with 0.2 g/min was vaporized and introduced into the reactor at the temperature of 100 °C. The oily products were washed by water and analyzed by GC–MS, but gem-difluorotrimethylcyclopropane was not detected.

2.3.9. Reaction of H_2 and CHF_3 in empty reactor

The reaction procedure and conditions were same as that in Section 2.3.2. The mixture of CHF_3 with 50 ml/min and H_2 with 50 ml/min were introduced into an empty reactor with 850 °C, the outgas was analyzed by GC–MS. The results were listed as follows.

- 1. CH₄, *m/z*: 16, ⁺M; 15, ⁺CH₃, 14, ⁺CH₂, 13, ⁺CH;
- 2. CHF₃, *m*/*z*: 69, ⁺CF₃, 51, ⁺CHF₂, 31, ⁺CF;
- 3. CH₂F₂, *m*/*z*: 52, ⁺M, 51, ⁺CHF₂, 33, ⁺CH₂F;
- 4. CF₃CH₂F, *m/z*: 102, ⁺M, 83, ⁺CF₃CH₂, 69, ⁺CF₃, 51, ⁺CHF₂, 33 ⁺CH₂F;
- 5. CHF₂CHF₂, *m*/*z*: 102, ⁺M, 101⁺CHF₂CF₂, 83, ⁺CHF₂CHF, 63 ⁺CHF₂C, 51, ⁺CHF₂.

2.3.10. Synthesis of CF_3I in the presence of AC and H_2

The reactor was packed with AC, and heated to 550 °C under nitrogen. After 2.5 h, then CHF_3 with 50 ml/min, vaporized I_2 with 10 g/h and H_2 with 50 ml/min were passed through the reactor. The products were neutralized by KOH solution, dried and analyzed by GC–MS. The results were listed as follows.

- 1. CH₄, *m*/*z*: 16, ⁺M; 15, ⁺CH₃, 14, ⁺CH₂, 13, ⁺CH.
- 2. CH₃CH₃, *m/z*: 30, ⁺M, 28, ⁺CH₂CH₂, 15, ⁺CH₃;
- 3. CHF₃, *m*/*z*: 69, ⁺CF₃, 51, ⁺CHF₂, 31, ⁺CF;
- 4. CH₃I, *m*/*z*: 142, ⁺M, 127, ⁺I.

2.3.11. Synthesis of CF_3I in the presence of catalyst KF/AC and O_2

The reactor was packed with AC, and heated to 550 °C under nitrogen. After 2.5 h, then CHF_3 with 50 ml/min, vaporized I_2 with 10 g/h and O_2 with 50 ml/min were passed through the reactor. The products were neutralized by KOH solution, dried and analyzed by GC–MS. The results were listed as follows.

- 1. CF₄, *m*/*z*: 69, ⁺CF₃; 50, ⁺CF₂;
- 2. CF₃CF₃, *m*/*z*: 119, ⁺CF₃CF₂, 69, ⁺CF₃, 50, ⁺CF₂;
- 3. CHF₃, *m*/*z*: 69, ⁺CF₃, 51, ⁺CHF₂, 31, ⁺CF;
- 4. CF₃CF₂CF₃, *m*/*z*: 169, ⁺CF₃CF₂CF₂, 119, ⁺CF₃CF₂, 100, ⁺CF₂CF₂, 69, ⁺CF₃; 50, ⁺CF₂;
- 5. CF₃CHF₂, *m*/*z*: 119, ⁺CF₃CF₂, 101, ⁺CF₂CHF₂, 69, ⁺CF₃, 51, ⁺CHF₂;
- 6. CF₃I, *m*/*z*: 196, ⁺M, 127, ⁺I, 69,
- 7. CF₃CF₂I, 246 ⁺M, 127, ⁺I, 119, ⁺C2F5, 100, ⁺C₂F₄, 69, ⁺CF₃; 50, ⁺CF₂;

3. Results and discussion

3.1. Pyrolysis of trifluoromethane on activated charcoal

It was reported that pyrolysis of CHF_3 at high temperature leads to the formation of tetrafluoroethene (TFE) as the major product,

and the mechanism of this process involves the dehydrofluorination of CHF_3 to form diffuorocarbene, which then dimerizes to form TFE [16–18].

Raphaele et al. obtained CH_2F_2 by reacting H_2 with CHF_3 at the temperature of 775 °C, and proposed the mechanism involved CF_2 carbene intermediate [16]. Wheaton and Burton used 2-methyl-2-butene, a electron-rich alkenes, to trap CF_2 carbene intermediate at the temperature of 120 °C and obtained gem-difluoro-2,2,3-trimethylcyclopropane to confirm the CF_2 carbene intermediate [19].

In our laboratory, CH_2F_2 are obtained successfully when hydrogen is introduced into the pyrolysis process of CHF_3 at 850 °C which indicates that CF_2 carbene is as the reaction intermediate in the pyrolysis process of CHF_3 . The results are consistent with the CF_2 carbene process depicted [16].

However, in our experimental, when AC or catalyst is charged into reactor, TFE is not detected in the pyrolysis process of CHF_3 . Also CH_2F_2 cannot be obtained in the pyrolysis process even though in the presence of hydrogen. Above-mentioned results indicate that the induction period of synthetic mechanism of CF_3I is different from the pyrolysis mechanism of CHF_3 . The result is attributed to the existence of activated charcoal or catalysts in process.

As reported, in the synthetic process of CF_3I by vapor-phase catalytic reaction, induction period was suspected that the dehydrofluorination of CHF_3 to form CF_2 carbene, and the CF_2 carbene cover the surface on the catalyst, but no TFE reported in by-products, [15].

To confirm above-mentioned hypothesis, we try to capture the CF_2 carbene intermediate with the help of hydrogen and an electron-rich alkenes to confirm the CF_2 carbene mechanism during the pyrolysis process of CHF_3 in the presence of AC. Hydrogen and 2-methyl-2-butene are used as trapping reagents in the induction period. The results are shown in Table 1. Based on the experimental 1, we do not get CH_2F_2 in the products when hydrogen is used to capture CF_2 carbene, but a certain amount of CH_4 exists in products. The results indicate no free CF_2 carbene formed in the process, or the formed CF_2 carbene transferred into CH_2 carbene in the presence of hydrogen to get CH_4 .

In the experimental 2 in Table 1, when 2-methyl-2-butene is used as a trapping reagent in pyrolysis of CHF_3 , also no gem-difluorotrimethylcyclopropane is detected in the process. At least, formed CF_2 carbene is not so easy to combine with 2-methyl-2-butene.

The interesting results are from the pyrolysis of CH_3F in the presence of AC. If the reaction gas is only CHF_3 without hydrogen, the products contain CF_4 , C_2F_6 , C_3F_8 , and C_2HF_5 (see experimental 3 in Table 1). The results clearly indicate that CF_3 radical exists in the pyrolysis process.

Based on above results, we suppose that the pyrolysis mechanism of CH_3F in the presence of AC is as Scheme 2. Firstly pyrolysis of CH_3 at high temperature leads to the dehydrofluorination of unimolecular HF of CH_3F to form CF_2 carbene. CF_2 carbene combines with AC strongly so that it do not dimerize. It might be decomposed into carbon and F radical on the surface of AC. F radical reacted with CF_2 carbene to form CF_3 radical. As the finally results, CF_3 radical becomes into CF_4 , C_2F_6 , C_3F_8 . In addition, a part of CF_2 carbene reacts with CHF_3 to form by-product C_2HF_5 . If H_2 is introduced into the reaction process, the F radical will react with H_2 to form HF so that CF_4 , C_2F_6 , C_3F_8 and C_2HF_5 could not be obtained in the process.

In addition, when pyrolysis outlet gas passes through deionized water, the water became into acidic from experimental 1 to 5 in Table 1, which might be attributed to that the HF formed solved into H_2O in pyrolysis process. This is another identification to support CF₂ carbene formation in the pyrolysis process of CHF₃. As reported in literature, the activation energy of elimination of a HF molecule from CHF₃ is much lower than the dissociation

Scheme 2. Proposed mechanism for the formation of CF₄, C₂F₆, C₃F₈ and C₂HF₅.

energies of C–F bond and C–H bond, and HF elimination to form CF_2 carbene may be an important pathway for CHF_3 decomposition and the CF_3 radical formation [20]. In the study on the mechanism of hydrogenation of CCl_2F_2 into CH_2F_2 , van de Sandt reported that CF_2 carbene would absorb on the PdC catalyst and it was the most important intermediate to form CH_2F_2 , CH_3F , CH_4 [21].

In our experimental, we suppose that CHF_3 cracks into HF and CF_2 carbene, then the CF_2 carbene combines with AC tightly since CF_2 carbene itself do not form $CF_2=CF_2$, and also the trapping reagents do not capture the CF_2 carbene. Although CF_2 carbene combined with catalyst strongly do not dimerize or react with the trapping reagents, but it will decomposed into carbon and F radical on heat. F radical reacts with CF_2 carbene to form CF_3 radical, then form CF_4 , C_2F_6 , C_3F_8 gradually in the reaction (see Scheme 2).

When H_2 joins the reaction, firstly the F radical reacts with H_2 to generate HF so that no CF₃ radical forms, then CF₄, C₂F₆, C₃F₈ and C₂HF₅ could not be detected in the products. Based on the experimental 4 in Table 1, the absence of CF₃I in the products during the reaction of I_2 and CHF₃ in the presence of H_2 further enhances our hypothesis, the primary products are CH₄, CH₃I. In addition, the absence of CH₂F₂ is attributed to that hydrogenation of CF₂ carbene transfers into CH₂ carbene, then becomes into CH₄ as shown in experimental 5.

In the experimental 5 of Table 1, first CHF₃ with 100 ml/min passes through the catalyst for 2 h at 550 °C, then nitrogen with 100 ml/min washes AC surface at 550 °C for 1 h, hydrogen passes through the catalyst to obtain CH₄, which indicates that the CF₂ carbene still remind on AC even though heating at 550 °C under nitrogen flow. The results indicate that the combination between CF₂ carbene and AC is quite strong, this is correspond to that CF₂ carbene itself does not easily dimerize to TFE when AC exists in the reaction. When hydrogen is introduced into AC surface, CF₂ carbene quickly transferred into CH₂ carbene. The mechanism can be schemed as following (Scheme 3).

Instead of the hydrogen passing through by HF on the surface of AC, CHF_3 is detected in the product, which is attributed to that CF_2 carbene in AC reacts with HF. It further confirms our hypothesis that CF_2 carbene is strongly combine with AC in the pyrolysis process of CHF_3 (see experimental 6 in Table 1).

3.2. Pyrolysis of trifluoromethane on catalyst KF/AC

To check the effect of catalyst of KF/AC in pyrolysis reaction of CHF_3 , KF/AC is packed into reactor instead of AC. The experimental data are listed in Table 2. The results indicate that the products are

$$\begin{array}{c} CF_2 \\ \overrightarrow{H_2} \\ AC \end{array} \xrightarrow{H_2} 2HF + \begin{array}{c} CH_2 \\ \overrightarrow{H_2} \\ AC \end{array} \xrightarrow{H_2} CH_4 \end{array}$$

Scheme 3. Proposed mechanism for the formation of CH₄.

Table 3			
Synthesis of CF ₃ I in	the presence	of catalyst	KF/AC ^a .

•				•				
Entry	Regent	GC ar	GC area%					
		CF ₄	CHF ₃	C_2F_6	C_3F_8	C_2F_5H	CF ₃ I	C_2F_5
12	CHF ₃ , O ₂ , I ₂	3.9	40.2	0.4	0.2	1.0	50.3	4.0

Reaction temperature: 550 °C.

^a Catalyst: KF/AC.

same as those of reactions in the presence of AC (see experimental 7 and 8 in Table 2). It is was presumed that AC co-catalyzes the dehydrofluorination of CHF₃ to form CF₂ carbene, then CF₂ carbene combines with AC or catalyst strongly, thus CF₂ carbene does not dimerize into TFE or does not react with H₂ to form CH₂F₂ even at high temperature of 850 °C.

CH₄ can be formed through pyrolysis of CHF₃ and H₂ in the presence of KF/AC (see No. 8 in Table 2), but does not generate from the reaction of AC and H₂ (see No. 9 in Table 2). Also CH₂F₂ existed in the products indicates that hydrogen capture CF₂ carbene in the pyrolysis process of CHF₃ (see No. 10 in Table 2), which further proves that CF₂ carbene appears in the pyrolysis process of CHF₃. AC is the co catalyst to promote the formation of CF₂ carbene and CF₃ radical in the synthesis of CF₃I by vapor-phase catalytic reaction.

Also we check the surface area of AC fresh (1161.7 m^2/g) and used AC (1085.0 m^2/g) in the pyrolysis of CHF₃, the result shows that the surface area decreases slightly after the reaction. Might be it can be attributed to that the coke-formation formed in the pyrolysis process of CHF₃.

3.3. Synthesis of trifluoroiodine by vapor-phase catalytic reaction

Based on the hypothesis above on the synthetic mechanism of CF_3I , the pyrolysis of CH_3F in the presence of AC or catalyst KF/AC leads to the dehydrofluorination of CH_3F to form CF_2 carbene, then CF_2 carbene decomposes into carbon and F radical on the surface of AC. F radical reacts with CF_2 carbene to form CF_3 radical. When iodine gas passes through catalyst bed with pyrolysis products, CF_3I is successfully prepared by vapor-phase catalytic reaction, the results is shown in Table 3.

4. Conclusion

A series of experimental indicate that the synthetic mechanism of CF₃I is described as follows. In high temperature, AC promotes the dehydrofluorination of CHF₃ to form CF₂ carbene, then CF₂ carbene combines with AC strongly to form CF₃ radical when F radical generated from decomposition of CF₂ carbene. Therefore, CF₂ carbene does not dimerize to form tetrafluoroethane, but takes place disproportionation reaction to generate CF₃ radical and carbon. As the final result, CF₃I is prepared from the reaction of CF₃ radical reacts and iodine in the presence of AC or catalyst. In the process, AC is not only the catalyst supporter, but also a co-catalyst to promote CF₂ carbene formation and CF₃ radical to produce CF₃I.

References

- R.A. Levy, V.B. Zaitsev, K. Aryusook, C. Ravindranath, V. Sigal, A. Misra, S. Kesari, D. Rufin, J. Sees, L. Hall, J. Mater. Res. 13 (1998) 2643–2648.
- [2] L.G. Christophorou, J.K. Olthoff, J. Phys. Chem. Ref. Data 29 (2000) 553-569.
- [3] J.C. Yang, I. Vazquez, C.I. Boyer, M.L. Huber, L. Weber, Int. J. Refrig. 20 (1997) 96– 105.
- [4] A. Misra, J. Sees, L. Hall, R.A. Levy, V.B. Zaitsev, K. Aryusook, C. Ravindranath, V. Sigal, S. Kesari, D. Rufin, Mater. Lett. 34 (1998) 415–419.
- [5] Y.Y. Duan, M.S. Zhu, L.Z. Han, Fluid Phase Equilib. 121 (1996) 227-234.
- [6] Y.Y. Duan, L.Q. Sun, L. Shi, M.S. Zhu, L.Z. Han, Fluid Phase Equilib. 137 (1997) 121– 131.

- [7] A. Banks, H.J. Emeleus, R.N. Haszeldine, V. Kerrigan, J. Chem. Soc. (1948) 2188– 2190.
- [8] A.L. Henne, W.G. Finnegan, J. Am. Chem. Soc. 72 (1950) 3806-3807.
- [9] H.J. Emeltus, R.N. Haszeldine, J. Chem. Soc. (1949) 2953–2956.
- [10] D. Naumann, W. Tyrra, J. Organomet. Chem. 334 (1987) 323–328.
- [11] D. Naumann, W. Tyrra, B. Kock, W. Rudolph, B. Wilkes, J. Fluorine Chem. 67 (1994) 91–93.
- [12] S. Mukhopadhay, H.S. Tung, US Patent 7,071,367 (2006).
- [13] S. Jean-Marc, FR Patent 2,794,456 (1999).
- [14] N. Nagasaki, N. Suzuki, S. Nakano, N. Kunihiro, US Patent 5,892,136 (1999).
- [15] N. Nagasaki, Y. Morikuni, K. Kawada, S. Arai, Catal. Today 88 (2004) 121-126.
- [16] R. Romelaer, V. Kruger, J.M. Baker, R. William, Dolbier Jr., J. Am. Chem. Soc. 123 (2001) 6767–6772.
- [17] D.J. Moon, M.J. Chung, H. Kim, Y.S. Kwon, B.S. Ahn, Ind. Eng. Chem. Res. 41 (2002) 2895–2902.
- [18] E. Tschuikow-Roux, J.E. Marte, J. Chem. Phys. 42 (1965) 2049-2056.
- [19] G.A. Wheaton, D.J. Burton, J. Fluorine Chem. 9 (1977) 25-44.
- [20] Y. Okamoto, M. Tomonari, J. Phys. Chem. A 104 (2000) 2729-2733.
- [21] E.J.A.X. van de Sandt, Catalytic Hydrogenolysis of CCl₂F₂ into CH₂F₂, Catalyst Development, Delft University of Technology, 1997, p. 45.